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We study the average case complexity of multivariate integration and L, function
approximation for the class F= C([0, 1]%) of continuous functions of d variables.
The class F is endowed with the isotropic Wiener measure (Brownian motion in
Lévy’s sense). For the integration problem, the average case complexity of solving
the problem to within & is proportional to ¢ ~%' * ") This is a negative result since
for a large number d of variables, the average case complexity is close to ¢~2; the
latter is also achieved by the classical Monte Carlo method in the randomized
worst case setting, Furthermore, ©(&~?) is the highest possible average case com-
plexity among a/l probability measures with finite expectation of || f/ ZL Thus, for
large d, the average case complexity of the integration problem with isotropic
Wiener measure behaves as the worst possible average complexity. For the function
approximation problem, the complexity is even higher since it is proportional to
£

These two negative results are in a sharp contrast to (H. Wozniakowski, Bull.
Amer. Math. Soc. 24, No. 1 (1991), 185-194; Bull. Amer. Math. Soc., to appear),
where, for F endowed with the Wiener sheet measure, small average case com-
plexities have been proven. Indeed, they are of order ¢ !(loge~')“~"2 and
e 2(loge~")?“~ Y for the integration and function approximation problems,
respectively, 1 1994 Academic Press, Inc.

1. INTRODUCTION

We study the integration and function approximation problems for mul-

tivariate functions f. For the integration problem, we want to approximate
the integral of f to within a specified error ¢ and for the function
approximation problem, we want to recover f with the L, error not

* An announcement of the paper appeared in Bull. Amer. Math. Soc. 28 (1993), 308-314.
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exceeding &. To solve both problems, we would like to use as small a
number of function values as possible.

Both problems have been extensively studied in the literature (see, e.g.,
[9, 16] for hundreds of references). However, they are mainly addressed in
the worst case setting. In the worst case setting, the cost and the error of
an algorithm are defined by the worst performance with respect to the
given class F of functions f. Not surprisingly, for a number of classes F,
the integration and function approximation problems are intractable
(prohibitively expensive) or even unsolvable. For instance, if F consists of
continuous functions that are bounded by 1, any algorithm that uses a
finite number of function values cannot approximate the integral of f nor
can recover f with the worst case error less than 1. Hence, both problems
are unsolvable for £<1. Assuming that functions f have bounded rth
derivative in the sup—norm, the number of function values required for the
worst case error not to exceed & is of order ¢ ~%’. Hence, for fixed », it is
exponential in d.

Due to intractability in the worst case setting, the average case setting is
of interest. In the average case setting, the class F is equipped with a
probability measure u. The error and the cost of an algorithm are measured
by the expectations with respect to u. Then, the average case complexity
{with respect to u) is defined as the minimal expected cost needed to
compute an approximation with the expected error not greater than e.

The majority of the average case results obtained so far (see, e.g., [3-6,
9-13, 15-18, 21]) deal with scalar functions (d = 1). These results indicate
that for a “reasonable” choice of measure p, the integration and function
approximation problems are significantly easier on the average than in the
worst case setting. Thus, one could hope that the intractability (or even
noncomputability) of multivariate problems in the worst case setting can
be removed by switching from the worst case to the average case setting.

This hope has recently been supported by Wozniakowski, see [23,24]
who analyzes integration and function approximation for the class
F=C([0, 1]¢) endowed with the Wiener sheet measure u. He proves that
the average case complexities of both problems are only weakly dependent
on the number of variables. Indeed, the average case complexity of
computing an ¢-approximation is @(¢~'(loge~!)“~ 12} for the integra-
tion problem, and ©(¢~*(loge ")~ ") for the function approximation
problem.

In this paper, we study the average case complexity of the integration
and function approximation problems. However, instead of the Wiener
sheet measure, we endow the class £= C({0, 1 ]¢) with the isotropic Wiener
measure (or Brownian motion in Lévy’s sense). We prove that the average
case complexity equals @(e~¥'* V") for the integration problem, and
@(e*?) for the function approximation problem. Unlike for the Wiener
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sheet measure, the average case complexity of the function approximation
problems depends strongly on d. In particular, for large d, this problem is
intractable since its complexity ©(¢~?) is exponential in d, and is huge
even for a modest error demand ¢. For large d, the average case complexity
of the integration problem is essentially proportional to ¢ =2 which is the
highest possible average case complexity of the integration problem.
Indeed, for any probability measure with finite expected value of || /| sza the
average case complexity is bounded from above by O(¢~?2). Hence, this is
again a negative result.

Thus, the average case complexities of integration and function
approximation problems are very different depending on whether u is the
Wiener sheet or isotropic Wiener measure. It is interesting to note that
both measures are identical when d= 1. They are different for d > 1; results
of [23, 24] and our results indicate how drastically different they are.

In this paper we allow nondeterministic (randomized) methods, even
though typically only deterministic methods are considered in the average
case setting. Formally, this could be viewed as strengthening our negative
results. However, our main reason for allowing nondeterminism is to unify
the presentation and to simplify some of the proofs; as will be clear later,
nondeterminism is no more powerful than determinism for problems
studied in this paper. In particular, the complexity bounds provided in
Theorem 1 remain true when only deterministic methods are allowed.

The paper is organized as follows. Section 2 provides basic definitions
and the statement of the main results. In addition to results already men-
tioned, it contains a result relating the average case complexities of the
integration and function approximation problems for general probability
measures. Section 3 provides the proof of the main result for the integration
problem. The proof concerning the function approximation problem is
given in Section 4. In addition to these proofs, we show that Haber’s [2]
modified Monte Carlo quadrature and a piecewise constant function
approximation provide almost optimal algorithms.

2. Basic CONCEPTS AND MAIN RESULTS

In this paper, we consider the following integration and function
approximation problems for multivariate functions. Let F= C(D) be the
space of continuous functions f: D — R where D is a bounded subset of R*.
For simplicity, we take D = [0, 1]“ as a unit cube. For every f€ F we wish
to approximate S(f), where S: F— G with

S(f):lm(f):j f(x)dx and G=R
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for the integration problem, and

S(f)=App(f)=f and  G=L,(D)

for the approximation problem.

We assume that the functions f are unknown; instead, we can compute
information N(f) that consists of a finite number of values of f taken at
some points from D. For a precise definition of N, see, e.g., [16]. Here we
only stress that

N(f)= [f(xl)a sl f(xn)]’

where the points x; and the number n of them (called the cardinality of N)
can be selected adaptively and/or randomly. That is, for adaptive N,
x/s depend on previously computed values f(x,), .., f(x,_,), and the
cardinality n=n(f) varies with f based on computed values. For
randomized N, the points x; and the cardinality #(f) may also depend on
an outcome of a random process 7. (That is, x; is selected randomly with
an arbitrary distribution that may depend on previously computed values
of f; the distribution of #( /) may also depend on observed values.) In such
a case we sometimes write N(f)=N,(f).
An approximation U(f) to S(f) is computed based on N(f). That is

U(f)=¢(N(f)),  where ¢:N(F)—-G

is an arbitrary mapping; ¢ is called an algorithm that uses N. The algorithm
¢ can also be random; in such a case, we sometimes write ¢ =¢,.

In the average case setting, we assume that the space F is endowed with
a (Borel) probability measure p. Then the average error and the average
cost' of ¢ are defined respectively by

e84, N, S, ) :=/ELE(IIS(f) ~ N (NI

and
cost™(g, N, S, u) := E, E (n(f)).

(By E, and E, we denote the expectations w.r.t. u and ¢, respectively.) Of
course, for deterministic N and ¢,

5§, N, S, 1) =/[r 1S(f) = (N IZ pldf)

! We measure the cost by the expected number of function values neglecting the com-
binatory cost of N and of ¢. With the exception of Theorem 2, this is without loss of generality
since, as explained in a number of references (see, e.g., [16]), for Gaussian measures the same
results hold for a more general definition of the average cost, provided that a single arithmetic
operation is no more expensive than a function evaluation.

640/77/2-8
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and

cost**(g, N, S.u)= [ n(f) u(d).

The average case complexity is the minimal average cost for solving the
problem to within a preassigned error accuracy ¢. That is,

comp™¥(e, S, u) :=inf{cost®™®(¢, N, S, ) : e*8(¢, N, S, u) < e }.

(We stress that the infimum above is taken with respect to all randomized
¢ and N.)

In this paper, we analyze the average case complexity of the integration
and function approximation problems (S =Int and S = App) assuming that
the probability u is the isotropic Wiener measure. This measure is also
referred to as the Brownian motion in Lévy’s sense. For more detailed dis-
cussion and properties of u, see, e.g., [1,7,8]. Here we only recall that u
is a zero-mean Gaussian measure with the correlation function

I+ Iyl = =yl

5 Yx, ye R%

K(x, y)

|x|| is the Euclidean norm in R¥.

Remark 1. Although F consists of functions f that are defined only on
D < R“ sometimes it is convenient to consider f as a function over the
whole space R“. Formally, this corresponds to extending f (as a stochastic
process) to the zero mean Gaussian process 7 with the correlation K(x, ¥)
given above. The corresponding integration and function approximation
problems are then defined by Int (f)=lnt(le) and AFE (f~)=
App(f|p), respectively. In the proof of Lemma 1, when using this corre-
spondence between f and f, we drop the ~-sign.

We are ready to state the main results.

THEOREM 1. For the integration and function approximation problems,

COmp'dvg(g, Int, #) = @(6—2/(1 + 1’/‘“)

and

comp**¥(¢, App, u) = O ).

For d=1, p equals the classical Wiener measure. Hence, for scalar
functions, this theorem follows from known results; see [12,13,15,19].
Therefore, in the rest of the paper, we shall consider d> 1.
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Since the proof of the theorem provides additional results of independent
interest (e.g., nearly optimal information and algorithms, and a relation
between the complexities of the integration and function approximation
problems for general measures) we present it in the next two sections: in
Section 3 for S=Int and in Section 4 for S= App.

As a matter of fact, a lower bound on complexity for S= App is derived
via a general result which, in turn, implies the following theorem.?

THEOREM 2. Let v be an arbitrary measure on F. If
comp®*8(g, Int, v)=Q(c77)

for some p <2 (obviously, p <2 whenever | f| f_z( py has a finite (v-)expecta-
tion), then

comp®*&(¢, App, v) = Q(g /2 p)),

3. INTEGRATION PROBLEM

In this section we prove Theorem 1 for S=Int. We also show that
Haber’s (see [2]) algorithm is nearly optimal.

The proof is based on the nth minimal average radius which is the mini-
mal average error among all algorithms that use # function values.

More precisely, let A, be the class of all deterministic and nonadaptive
information operators N of cardinality n. That is, Ne 4, means that
N(f)=[f(x,), ..., f(x,)] for some points x, that are chosen a priori. By the
average radius of N, we mean the minimal average error among all
algorithms ¢ that use N,

r*'&(N, Int, u) = inf e**8(¢, N, Int, u).
¢

Then, the nth minimal average radius is defined by

r(n, Int, p) = inf r*%(N, Int, p). (1)

NeA,
In the next two subsections we prove that

r*®(n, Int, u) = O(n~ 127 1/20), (2)

2 This theorem is the only place in the paper where neglecting the combinatory cost in the
definition of the average cost of algorithms is important; see footnote 1 and the proof of the
theorem in Section 4.1.
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This is sufficient to prove Theorem 1 for S = Int. Indeed, from [19, 20] we
know that for Gaussian y and linear S, the average case complexity is fully
determined by the behavior of nth minimal average radii. In particular, if
they are semi-convex in # (as in (2})), then

comp®é(¢, S, u) = O(n*(¢)), where n*(¢)=min{n: r*"®n, S, p) <e}.
Furthermore, information N}%, € 4,.., and an algorithm ¢* that satisfy
e*E(@*, Nioiry, S, ) =r"%(n*(2), S, )
are nearly optimal. In particular, randomization does not help and
comp?®“¥(e) < comp™'&9%(e) < comp®¥(e) + 1/2,

where comp®*#9'(¢) is the minimal average cost among all deterministic
algorithms using deterministic information with the average error less than
or equal toe.

3.1. Lower Bound

We show that the rhs of (2) is a lower bound on r*'8(n, Int, u), ie.,

LEMMA 1.
ravg(n, Int, /i) = Q(n —1/2— 1/(2,1))'

Proof. Let H be the reproducing kernel Hilbert space spanned by the
family {K(x,-):xeR“} with the corresponding inner product {f, g4
determined by

<K(x’ ')’ K(,V, )>;x = K(X, )’), Vx’ ye Rd‘

The space H is critical for our analysis since, as it has been succesfully
exploited for various integration problems (see, e.g., [3, 4, 11, 12, 16-18,
241]), the average radius of nonadaptive information N equals the worst
case radius r*(¥, Int, BH) of N defined by

r¥(N, Int, BH)Y=inf sup |Int(f)— ¢(N(S))|.

¢ feBH

The set BH is the unit ball in the space H. Hence, to prove the lemma, it
is enough to bound from below the worst case radius of any nonadaptive
information N(f)=[f(x,), .., f(x,)].

For this end, we need some characterization of the space H. Such a
characterization has been provided by Molchan [8] for odd 4, and later by
Ciesielski [ 1] for arbitrary 4. From Lemma 4.1 and Theorem 4.1 in [1] we
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know that any real valued function f from CZ(R“) that vanishes at zero
belongs to H. Furthermore, for any two such functions £, g,

(f,8u=al (=)L (=)D g |y

where a, is a (known) constant and 4 is the Laplace operator. For d+1
not divisible by 4, (—4)“* " is understood in the generalized form (see,
eg, [14]).

Without loss of generality we assume that (27)'¢ is an integer. For
m = 2n, consider m equal-size cubes that partition D. The centers of these
cubes are denoted by v;. Let

“Y4 and  g(n) =¥yl

for a nonnegative function Y e C*(R) with ¥(1)=0 iff 1>1/16. For
i=1, .., m, define the following functions:

Jilx)=g((x —v,)/h).

Since |v,|| = h/2, £;(0)=0. Therefore f;,€ H. Furthermore, the functions f;
have disjoint supports, B;:=supp(f;)={x:|x—v| <h/4}. As a matter
of fact, dist(B,, B;)>h/2 for i+# j. Since the information N consist of n
function values at points x,, .., x,,, these points are not contained in at
least m — n=n cubes, indexed by 1, ..., n. Hence, the function

h=m

f=Y

has zero information, N(f) = 0. Furthermore, Int(f) = nlInt(f;) =
nh"j'"y“glg( y)dy =C, for a positive constant C,. Therefore, the average
and worst case radii of N are bounded from below by

C
r*8(N, Int, u)=r*(N, Int, BH)=  sup |Int(g)| > 7:—‘—.

geEBH N(g)=0 ” ”y

Thus, to complete the proof, we only need to show that
1/1, < Cah™ 92712 = Q12+ 1) (3)

for some constant C,. In what follows, we write C to denote positive (in
general different) constants which are independent of n.

We begin with the case of d+ 1 = 4k for an integer k. Since
(— )@+ 1% = (— A)* preserves disjoint supports of f;’s, f;'s are orthogonal
in H. Thus, /12 =a, 27_, 1= 4 fill2 0 = aan (= 4V [ 12 0= |LFi]12.
Furthermore, 4* fi(x)=h"** A*g(y)|, -« vy and a simple change of
variables yields || f,]|2 = Ch~'. This proves (3) for d + 1 = 4k.



220 G. W. WASILKOWSKI

For d—1=4k, we have an analogous situation since (f,,f),.=
a (=) " fi, [;> Lyme, and the orthogonality of f;s is preserved.
Consider therefore the final case of d=2k. Then

||f||,21: Z bi.j with bi.j=<fi,fj>u-
ij=1

From [1], b, ,=C x4+ 1 £,(x) f,(x) dx, and well known properties of
the Fourier transform imply

bo=Ch-', Vi (4)
buy=CJ Ml &0 fx) dx  with gi(x)=(=2)"" £ (x)
Using Lemma 1(b) on p. 117 in [14], we have for i#j

b=C [ T [ gulx =) Iyl dy dx

=c[ f [ g ly=x1~*" dydx.

Obviously, the inner integral equals [, ((—4)* f;(»)(—4 |ly—x|| =9} dy.
As for the case of d+1=4k, the absolute value of the first term
(involving f;) is bounded from above by Ch~%*. The second terms equals
Clly—x| 47" recall that ||x—y|>h/2. Using the fact that f; is also
bounded, we conclude that

byl SCR %[ flx—y) 4 d(x, p),

Bix By

where d(x, y) denotes dx dy. This and (4) imply

IAIZ< Y biit+ 2 16, I <Ch 'n+ Ch“zkf lx =yl =4 dix, ),
i=1 i#j Dy
where D, = {(x,y)e D*: | x —y| >h/2}. Since the integral of ||x—y| ¢!
over D, is bounded by Ch~!, the rhs of the above inequality equals
O(h=%* 1), as claimed in (3). This completes the proof of Lemma 1. |

3.2. Upper Bound

To prove that the rhs of (2) is also an upper bound on the nth minimal
average radius, we exhibit specific information N'™ of cardinality » and an
algorithm ¢!™ whose average error equals @(n~'/2*V(29) Although the
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information N f,’" is randomized, it has a fixed cardinality. Hence, the mean
value theorem implies that there exists nonadaptive deterministic informa-
tion N* of cardinality n with with r*¥&(N*, Int, u) = O(n 2~ 12D) This
suffices to complete the proof of Theorem 1. Furthermore, from the
discussion at the beginning of Section 3, we conclude that the exhibited
information and algorithm are almost optimal.

Let n=p? for an integer p. Partition D into n equal-size cubes U,, U, =
x;+ [—1/(2p), +1/(2p)]1°. Note that the Lebesgue measure of each U,
equals 1/n. Consider randomized information

N =LA, - f1)], (3)

where t’s are independent and uniformly distributed in Us and an
algorithm ¢'™, due to Haber [2],

1 n
SN =] T S (6)

LEMMA 2. For every n, the average error of ¢\™ that uses N'™ equals

_Toun Ix—yi/2d(x,y)

1/2+l/(2d) (7)

eH(B, NI, Int, 1) =

Hence ¢'™ and N'™ are almost optimal. Indeed, for

1/(d+1)1d
n’"'(s>=[(e~2 [IRCESTZ d(x,y)) ] :

¢f,’1‘,§((6) has the average error not exceeding & and its cost is proportional to
comp®*®(e, Int, p).

Proof. We need only to prove (7). For brevity, let ¢, denote
PN £)). For every f, the expectation (w.r.t.?) of the square of the
error of ¢, equals

E(st—s=3 (v |, re (], fixyax)').

Hence, taking next the expectation w.r.t. f, we get

(eavg( Im’ NInt Int #))2

( e ] JRLESIEILE TPy

i

le vl
ijvj 7 d(x% ).
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Note that ,’-ij Uy “X—‘y” d(x, J/) =n72¥ e ijD “x—y” d(x, y) ThlS com-
pletes the proof. |

Remark 2. In the worst case setting with F=C[0,1]% Haber’s
modified Monte Carlo algorithm ¢! and the classical Monte Carlo algo-
rithm n='Y7_ | f(z;) (with ¢s uniformly distributed in D) have (modulo
constants) the same errors that are proportional to 1/\/;. It can be verified
that the average error of the classical Monte Carlo algorithm remains
proportional to 1/\/;; it equals \/n‘l ijD lx —»)/2 d(x, y). Hence, it is
precisely n'/*? times larger than the average error of the modified Monte
Carlo algorithm.

4. FUNCTION APPROXIMATION PROBLEM

As for the integration problem, the proof of Theorem 1 for S=App is
based on showing that

r**¥(n, App, ) = O(n~ ') (8)

with the nth minimal average radius r**(n, App, 1) for the function
approximation problem defined in a similar way as for the integration
problem in (1).

In Subsection 4.1, we prove that the rhs of (8) is a lower bound on
r*'&(n, App, u). Our proof is an immediate consequence of a more general
result, Theorem 3, which in particular implies Theorem 2. In Subsec-
tion 4.2, we prove that the rhs of (8) is an upper bound on r*'8(n, App, u);
actually we show that a piecewise constant function approximation
provides an almost optimal algorithm.

4.1. Lower Bound

We have defined the nth minimal average radius by restricting the class
of information to nonadaptive information only. For Gaussian measures
{such as u), such a restriction is without loss of generality since adaptive
information of fixed cardinality does not help; see [227]. Furthermore, as
mentioned in Section 3, the average case complexity of a problem with
linear S is fully determined by the behavior of the nth minimal average
radii; see [19].

However, for an arbitrary probability measure v, adaptive information
{with or without varying cardinality, deterministic or randomized) might
be more powerful than nonadaptive information. Therefore, for the
purpose of the following theorem, we need a more general notion of the



INTEGRATION/APPROXIMATION ON AVERAGE 223

minimal average radius, called cth minimal average adaptive radius. It is
defined by

r¥g(c, S, v)=inf{r**&(N, S, v) : E(n(f)) < ¢}

for a positive number ¢. Recall that E(n(f))=E, E(n(f)) is the expected
cardinality of N.

THEOREM 3. For an arbitrary probability measure v on F, the minimal
(v-) average radii for the integration and function approximation problems
satisfy

r*8(n, App, v) = /k r**¥(n + k, Int, v)
r¥&(c, App, v) = Jk ri¥(c +k, Int, v),
for all n, c, and k.

Proof. Choose any k and n. Consider an nth optimal information N}
and the optimal error algorithm ¢* for the function approximation
problem (without loss of generality we assume that they exist). That is,

r*'&(n, App, v) = r*"8(N, App, v) = e™5(¢*, N ¥, App, v).

For brevity, f* denotes ¢*(N}X(f)).

For the integration problem, consider the following N and . The
information N(f) consist of n function values provided by NX*(f) plus k
function values at randomly chosen points ¢,€ D. The points are chosen
independently with uniform distribution on D. The algorithm @(N(f})
is then the integral Int(f*) plus the classical Monte Carlo method

K k7' (f(t;)~ f*(1,)) applied to the integrand f— f*. Then, the square

of the average error of ¥ equals
(€3 NIt ) = [ D= 41— (00— £ W(d)
< | U= 1 va)
:
= L (5N, App, 1))

Since N has cardinality # + k£ and since randomization does not help on the
average, the average error of y is greater than or equal to the (n + k)th
minimal average radius for the integration problem. This completes the
proof of the first inequality.

The proof of the second inequality is very similar; therefore, we only
indicate the difference between the two proofs. Instead of N} of fixed
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cardinality, we take N* that satisfies: E(n(f))<c and r**8(N}, App, v)=
rix®(c, App, v). The corresponding information N(f) for the integration
problem consists of N *(f) plus k values at random ¢,’s. Since the expected
cardinality of N equals the expected cardinality of N* plus &, the rest of the
proof easily follows. |}

Remark 3. This theorem can easily be extended in a number of ways.
For instance, consider the function approximation problem with the
error | f— f*|| measured in a weighted L,(D)-norm, ie., | f—f*|*=
{ p w(x)(f(x)— f*(x))? dx for some weight w>0. Then repeating the proof
with ¢ derived from the classical Monte Carlo method applied to the
integrand (f(x)— f*(x))/w(x) we immediately conclude that the nth
minimal radius of the weighted function approximation problem is

bounded from below by ﬂ times the (n+ k)th minimal radius of the
following weighted integration problem Int(f)= [, f(x) \/w(x) dx.

Another generalization concerns the worst case setting with randomiza-
tion. In this setting, instead of the expectation E,, we take the supremum
w.r.t fe F, (F,is a given subset of F) in the definitions of the error and cost
(the expectation w.r.t. random ¢ remains). For more detailed definitions,
see e.g., [16]. Let riv%(c, S, Fy) denote the corresponding c¢th minimal
worst case adaptive radius. Replacing the integrals jF v(df) by sup,. g, in
the proof of Theorem 3, we immediately get ri (¢ +k, Int, FO)\/ZS
rac ¢, App, F,). Hence, again, in the worst case setting with randomiza-
tion, integration is an easier problem than function approximation
problem. We stress that this need not be true if the worst case deterministic
(without randomization) setting is considered since for a number of classes
F, the integration and approximation problems have asymptotically the
same worst case deterministic complexities; see, e.g., [9, 16].

As an immediate conclusion from Theorem 3 with k=»n and Lemma 1,
we have the lower bound

LeMMA 3. For the measure u, r**8(n, App, u) = Q(n=V39),
We end this subsection by providing

Proof of Theorem 2. Since the average cost of an algorithm that uses
information N is measured by the expectation of the cardinality number
n(f) of N,

comp*'&(g, S, v) =inf{c: r3¥c, S, v) <&}

Hence, Theorem 3 with & ~ comp?®*®(e, Int, v) completes the proof. |}
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4.2. Upper Bound

We exhibit NAPP and ¢4°P that are almost optimal.
As in Section 3.2, consider n=p? and n equal-size cubes U;, each
centered at x;. Define

n

NP1 =A%), 0 f(x)] and @P(NRPP()) = ) i) flxo),
9)

with g, being the indicator function for the set U,.

LEMMA 4. For every n, the average error of ¢2PP that uses N2PP equals

(@200, N2, App, ) = X2 2 & (10)

l/(2d)

Hence ¢2°? and N® are almost optimal. Indeed, for

d
nAPP(5) = [N [ 12 dx]

¢:,{’ppp(e) has the average error not exceeding ¢ and its cost is proportional to

comp*8(g, App, 1)

Proof. We need only to prove (10). For this end note that

(e*%(¢5™", N "F, App, 1))’

—J(Mxﬂ—2ZgLﬂKux +Z:&ugMﬂK( m)a

i=1 Li=1

=4,—4,,

where

A= (Kin= 3 g0x) Kixx) ) de

_Zj(mxm—(xxnw
lIx— XH+||’C|| [l

Zf 2 dx,

i=1
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and

A=Y, | (x)( (x,x)— ¥ g0 K(x,, x,-)> dx

i=1 J=1

Z K X, X;) d\’—Zf (x;, x;)dx

i=1 i=1

—Zf x —zx il = lxill d,

i=1

(the second equation follows from the fact that g; and g, have disjoint
supports when i#j). Therefore (e*¥(¢2"®, N4 App, u))=4,—4,=
Y7o fu Ix=xll dx=n""“{, Ixll/2 dx, which was to be proven. |
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